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The increased awareness in reducing energy consumption and encouraging 

response from the use of smart meters have triggered the idea of non-

intrusive load monitoring (NILM). The purpose of NILM is to obtain useful 

information about the usage of electrical appliances usually measured at the 

main entrance of electricity to obtain aggregate power signal by using a 

smart meter. The load operating states based on the on/off loads can be 

detected by analysing the aggregate power signals. This paper presents a 

comparative study for evaluating the performance of artificial intelligence 

techniques in classifying the type and operating states of three load types that 

are usually available in commercial buildings, such as fluorescent light, air-

conditioner and personal computer. In this NILM study, experiments were 

carried out to collect information of the load usage pattern by using a 

commercial smart meter. From the power parameters captured by the smart 

meter, effective signal analysis has been done using the time time (TT)-

transform to achieve accurate load disaggregation. Load feature selection is 

also considered by using three power parameters which are real power, 

reactive power and the TT-transform parameters. These three parameters are 

used as inputs for training the artificial intelligence techniques in classifying 

the type and operating states of the loads. The load classification results 

showed that the proposed extreme learning machine (ELM) technique has 

successfully achieved high accuracy and fast learning compared with 

artificial neural network and support vector machine. Based on validation 

results, ELM achieved the highest load classification with 100% accuracy for 

data sampled at 1 minute time interval. 

Keywords: 

Artificial Neural Network 

(ANN) 

Extreme learning machine 

Non-intrusive load monitoring 

Support vector machine 

 

Copyright © 2018 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Ramizi Mohamed,  

Centre for Integrated Systems Engineering and Advanced Technologies 

Faculty of Engineering and Built Environment 

Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia 

e-mail: azah_mohamed@ukm.edu.my 

 

 

1. INTRODUCTION  

Monitoring energy consumption of electrical appliances in various building is an important part of 

energy management with advantages such as knowing energy consumption behavior, and for 

troubleshooting. By implementing efficient energy management, user demand management by the utility may 

lead to considerable energy savings. However, conventional load monitoring has several disadvantages due 

to the use of expensive meter and high installation cost, thus making it unsuitable for large scale monitoring. 

Therefore, non-intrusive load monitoring (NILM) based on monitoring electrical loads at one point of power 

measurement is introduced. This method is economical because it does not require installation of many 

meters and has potential for better energy management.  
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Currently, smart meter with NILM has been used by power supply companies to evaluate uses of 

electric power in consumer homes. NILM is defined as the separation process of individual electrical 

equipment in an electrical circuit by analyzing the signal obtained at a point of measurement of power [1]. In 

general, the idea of implementing NILM is to separate the aggregate energy obtained from smart meters to 

the energy of individual electrical equipment [2]. The implementation process of the NILM method is simple 

because it does not require the use of large number of meters and that only one smart meter is installed at the 

main entrance of electricity. However, it is necessary to pass through a complex process of signal separation 

analysis to separate the aggregate signals monitored by smart meters to signals of individual equipment used 

[3]. By implementing the NILM method, consumers are able to monitor the operation of all electrical loads 

used in a building without incurring high installation cost of meters.  

In NILM, it is also important to predict and classify the operation of various electrical appliances 

[4]. For predicting the operation of various electrical appliances, different artificial intelligence and machine 

learning techniques have been used such as artificial neural network (ANN), fuzzy logic and support vector 

machine (SVM) [5]. By using artificial intelligence techniques, the operation of the associated electrical 

appliances can be classified. Some researchers have implemented NILM using the ANN classification 

technique [6] while SVM technique was used in [7], [8]. The random forests method is also considered in the 

prediction of electricl loads to identify the type and status of loads [9]. In addition, some researchers applied 

the nearest neighbors in predicting loads in NILM [10]. However, the load prediction accuracy is still 

unsatisfactory and therefore there is a need to develop better and accurate prediction technique.  

In this paper, a performance comparison is made on the use of artificial intelligence techniques to 

monitor three types of electrical appliances with different load profile conditions. The three electrical 

appliances considered are the load types that are usually available in commercial buildings, such as 

fluorescent light, air-conditioner and personal computer. The compared artificial intelligence techniques are 

the extreme learning machine (ELM), ANN and SVM techniques. 

 

 

2. THE MATERIAL AND METHOD 

The entire NILM implementation procedure can be divided into two parts as shown in Figure 1. The 

first part is data collection and analysis of load profiles while the second part is the selection and extraction 

of load features and the development of artificial intelligence techniques to predict and classify the loads.  
 

 

 
 

Figure 1 Procedures in the proposed NILM 
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2.1. Load Profile Data Collection and Analysis  

NILM is implemented in a real laboratory scenario by installing a smart meter at the distribution 

panel which is the main entrance of power source. Figure 2 shows the proposed NILM system developed at 

the laboratory scale. The electrical appliances that were monitored are the fluorescent lights, air conditioners 

and personal computers which create different patterns of power consumption. The smart meter installed in 

the system monitor 7 sets of fluorescent lights, one air conditioner unit and several personal computers. 

These appliances are switched ON and OFF within 24 hours. Load monitoring is performed by using the 

supervised method in which all targeted individual load signals are recorded along with the aggregate signals. 

However, for 24 hours of electrical equipment such as the computer server, its power is ignored and the 

operation of this computer is not considered in this NILM study 
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Figure 2. Set-up of the proposed NILM system 

 

 

In the implementation of NILM, it is important to carry out load profile analysis to ensure that all 

the monitored loads can be identified. The load profile measured is the overall shape of the operation of the 

device in terms of power (P) against time (t). The data collected should include the overall pattern shown by 

the nature of the load. This is to ensure the accuracy of the load model trained with artificial intelligence 

techniques. 

Figure 3 shows the real power measured by the smart meter at sampling rates of 1, 10 and 30 

minutes. These sampling rates are considered to assess the capability of the smart meter in disaggregating 

loads at low and high sampling rates. Considering the energy usage profile and taking into account the 

maximum demand at a certain period of time, the maximum number of appliances in use is identified.  

The power parameters recorded by the smart meter are grouped in the form of tables according to 

the data sampling by using the EnerSis software. The complete data collected for each record is within 24 

hours based on maximum demand within a certain interval. All data obtained from the smart meter, such as 

active power, reactive power, power factor, voltage and current are collected in a database for further 

analysis and classification of load types. Data collection process is done by considering all combinations of 

open and close operation of the three types of electrical equipment. 
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(a) 

 
 

(b) 

 

 
 

(c) 

Figure 3. Real power measured at (a) 1, (b) 10 and (c) 30 minute sampling rates 

 

 

Data collected into databases are divided into two sets of data randomly selected, ie, 60% as training 

data for training while 40% of samples for testing the artificial intelligence techniques. From the experiments 

performed, the data sets obtained are such that 1706 samples for 1 minute data, 170 samples for 10 minute 

data and 56 samples for 30 minute data. The collected data were obtained by means of supervised load 

monitoring while the validation data were collected by taking into account the opening and closing of 

electrical equipment at different times. The number of data sets collected for training, testing and validating 

the artificial intelligence techniques are 549, 366 and 1706 samples respectively. 

 

2.2. Load Feature Selection and Extraction 

Selection and extraction of the features of the three types of electrical equipment are performed to 

select the best load features for the purpose of identifying the opening and closing of load operations. By 

using the commercial smart meters, we can obtain power parameters such as real power (W), reactive power 

(Var) and power factor. All of these parameters are measured automatically by smart meters and selected as 

the load features. To improve the load recognition accuracy, an additional feature is extracted from the smart 

meter data by using a relatively advanced signal processing technique known as the time-time (TT)-transform 

[11].The TT-transform is based on the S-transform [12] and it is a time-time analysis technique which is able 

to localize the signal. It is used for feature extraction by creating a different feature of the load profile for 

non-periodic electrical signals. The TT-transform technique applied on a non-periodic signal is considered 

appropriate because the appliance switching event is easily detected with respect to time. The TT-transform 

signal is a 2 dimensional time-time representation of a 1 dimensional time signal and it is given by [13], 
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𝑇𝑇(𝑡, 𝜏) = ∫ 𝑆(𝜏, 𝑓)
∞

−∞
exp(2𝑖𝜋𝑓𝑡) 𝑑𝑓      (1) 

 

where f is the frequency, t and τ are the time variables. 

The TT-transform analysis is used to detect events occuring in the signal so as to provide 

information about the appliance activity. The event caused by switching activity is localized by the time 

features of the real power around a particular point on the time axis. The new time feature provides a better 

event detection occuring during the time period at a certain energy level and magnitude. Both the TT-

transform and S-transform produce m×n matrices, in which the S-transform is in the time-frequency domain 

whereas the TT-transform is in the time domain. Both the S-transform and TT-transform are complex 

numbers and can be used as features to classify the non-periodic signals obtained from a smart meter. The 

information in the TT-transform matrix can be plotted as time-time mesh and contours so as to facilitate the 

analysis in signal changing detection via visual inspection of the energy level. From the complex numbers of 

each element in the TT-transform, several parameters are derived using the standard statistical analysis. The 

T-transform features are analysed by calculating statistical indices such as maximum, minimum, standard 

deviation, and mean. The standard deviation is selected because it is a robust feature that can enhance the 

accuracy of load identification. The standard deviation is computed and derived from the T-transform matrix 

as it gives a good feature to classify the target appliance. Thus, the load features selected and extracted in this 

work are the real and reactive powers and the TT-transform standard deviation. The correlation between the 

event occurring in the signal and the T-transform analysis is shown in Figures 4 and 5. 

Figure 4 shows example of the absolute values of the TT-transformation of real active power signal 

according to different load operations. From this figure, the different types of loads and power levels show 

different patterns of contour. This comparison can be seen through the resulting pattern and the resulting 

color level in which the pattern reflects the current events as well as the Open and Close operation of the 

loads.  

 

 

 
 

Figure 4. TT-transformed of an example load power signal 

 

 

To detect the load operation events more precisely, the overall picture in the form of mesh plot is 

given as in Figure 5. With a 3-dimensional plot, the difference in power usage for each load combination can 

be seen more clearly where each load combination gives different dimensions of power generation. 
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Figure 5. The 3 dimensional plot for detecting the load switching events 

 

 

2.3. Classification of Loads Using Artificial Intelligence Techniques  

In this study, three artificial intelligence techniques are considered to identify the type and status of 

load operations for NILM application. The artificial intelligence techniques considered are the extreme 

learning machine (ELM), artificial neural network (ANN) and support vector machine (SVM).  

ELM is based on the generalized single layer feedforward neural network in which the hidden layer 

does not require tuning [14]. It is developed to address the slow learning speed problems of the gradient 

based learning algorithm. The number of hidden nodes in ELM is less compared to the number of input 

nodes. The single layer feedforward neural network with randomly chosen input weights and hidden layer 

biases can exactly learn N hidden nodes with distinct observation [15]. The ELM reproduces the input 

patterns at the output layer through minimizing the reconstruction error. The algorithm starts with selecting 

the parameter randomly in the hidden nodes and the output weights are analytically determined through a 

simple generalized inverse operation of the hidden layer output matrices. The output layer weights are 

obtained by using the least square method. In ELM, it is unnecessary to perform iterative tuning in which the 

parameters of the hidden nodes, input weights and biases are generated randomly and the output weights are 

analytically computed by means of a simple generalized inverse operation. The ELM method randomly 

generates input and hidden layers connected weights and hidden layer neuron threshold. Table 1 shows the 

results of the optimum parameters for the ELM technique. The selection of hidden neurons is performed by 

systematic iteration method using the sin activation function. of sin. 

 

 

Table 1. Optimum Parameters of ELM 
Parameter Optimum Parameter 

Number of hidden neurons 33 neurons–1 min 

 22 neurons–10 min 
 13 neurons–30 min 

Activation function sin 

 

 

ANN was also implemented for the development of the NILM model to predict the type of load and 

its operation. The RNT model considers the multi-layer feedforward model. The NILM implementation 

procedure using the multi-layer ANN starts by setting the data set which consists of input and output data for 

training. The optimum ANN model is achieved by determining the optimum values for hidden neurons and 

learning rates based on the trial and error approach. The mean square errors are evaluated and the optimum 

parameters for the multi-layer ANN are determined as shown in Table 2. For a sampling rate of 1 minute, 4 

neurons and learning rate of 0.5 are the optimum parameters with 100% ANN accuracy. Furthermore, the 

optimum values of hidden neurons and optimum learning rates for sampling rate of 10 minutes and 30 

minutes are 4 neurons and 0.1 and 6 neurons and 0.9, respectively. 

 

 

 



BEEI  ISSN: 2302-9285  

 

Performance Comparison of Artificial Intelligence Techniques for Non-intrusive… (Khairuddin Khalid) 

149 

Table 2. ANN Parameters 
Parameter  Parameter Value 

Mean square error (MSE) 0.0001 

Optimum no of hidden neurons 4 neurons–1 min 

 3 neurons–10 min 
 6 neurons–30 min 

Optimum learning rate 0.1–1 min 

 0.5–10 min 
 0.9–30 min 

Hidden layer 1 

Hidden neuron activation function Logsig 
Output neuron activation function Purelin 

 

 

Support vector machine (SVM) is one of the techniques used for the load classification in NILM [7]. 

Three SVM models have developed to predict three types of targeted loads. To form a robust SVM model, 

optimization of two parameters, namely, gamma, γ and sigma, have been considered. The gamma parameter, 

γ is the parameter of the compiler that determines the suitability between error and smoothness while sigma 

refers to the open space of the basic function of the kernel radius. An iterative optimization technique has 

been implemented to determine both of these optimum parameters by considering γ values set between 0.1 

and 10 and sigma values in the range 0.01 to 1. Table 3 shows the optimum parameters of the SVM kernel 

function. For a sampling rate of 1 minute, γ=1.1 and sigma=0.11 were selected as the optimum values for 

training the SVM. Furthermore, for a sampling rate of 10 minutes, the optimum values for sigma=0.11 and 

γ=1.1 while for a sampling rate of 30 minutes optimum values of γ=0.1 and sigma=0.11. 

 

 

Table 3. Optimum Parameters for SVM 
Parameter  Value Sampling rate  

Gamma, γ 1.1 1 min 
 1.1 10 min 

 0.1 30 min 

Sigma, 
2

  
 
0.11 

 
1 min 

 0.11 10 min 

 0.11 30 min 
Kernel function type Gaussian 

 

 

To evaluate the performance of the developed ELM, ANN and SVM developed, errors for target 

and predicted outputs need to be assessed. The mean squared error (MSE) has been used as a performance 

index to evaluate the binary output errors in which the binary output is in terms of the load appliance 

operation which is labeled as ‘1’ or ‘0’ referring to the ON and OFF states, respectively. The MSE equation 

is given as follows: 

            

 

                                                        (2) 

 

where is the predicted output for each data set n , and Y is the target output.   

The performance of the developed model is also assessed based on the correct classification and 

misclassification of the training and testing data. Evaluation of the result is based on the load output which is 

classified as true positive (TP), and false negative (FN) are expressed as follows: 

 

TP=Σt (Actual output & Predicted output=ON     (3) 

 

FN=Σt (Actual output=ON & Predicted output=OFF)     (4) 

 

From the correct classification and misclassification of the training and testing data, the accuracy is 

determined as follows: 

 

Accuracy=(TP+FN)/(No of overall outputs)      (5) 

 

In addition, the F-score is considered in which it refers to the average accuracy and also recovery 

(Hyungsul Kim et al. 2011). F-score is expressed as, 
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F-score=2 (Precision x Recall)/(Precision+Recall)     (6) 

 

where precision is the number of correct positive results divided by the number of all positive results 

returned by the classifier, and recall is the number of correct positive results divided by the number of all 

relevant samples (all samples that should have been identified as positive). 

 

 

3.  RESULTS AND ANALYSIS 

Input data for training the ELM, ANN and SVM considers the active power (P), reactive power (Q) 

and the resulting TT-transform standard deviation obtained from the load features. The ELM, ANN and SVM 

output is the operating status of the type of lights, air conditioner and personal computer labeled as '1' for 

open load operation and '0' for load-closing operation. Input and output data are generated and collected from 

load switching activities by considering three data sampling rates, ie, 1 minute, 10 minutes and 30 minutes. 

Table 4 shows the number of data sets used for training, testing and validating the ELM, ANN and SVM. 

 

 

Table 4.  Data sets for ELM, ANN and SVM 

Type of Data 
Sampling Time 

1 min 10 min 30 min 

Training 549 55 18 

Testing 366 36 12 
Validation  1706 170 56 

Total 2621 261 86 

 

 

All the ELM, ANN and SVM have been trained using the optimum parameters. The training and 

testing results for the ELM, ANN and SVM are presented in the following sub-sections. 

 

3.1. ELM, ANN and SVM Training Results 

The ELM, ANN and SVM were trained using data sets with sampling rates of 1, 10 and 30 minutes 

and the training results are as shown in Table 5. Performance evaluation of the trained ELM, ANN and SVM 

is based on the MSE, percentage overall accuracy and F-score calculations. Based on the training results 

obtained, the ELM, ANN and SVM give good predictive results with almost 100% overall accuracy. By 

comparing the training results, ELM gives the best prediction with MSE=0, F-score=1, and 100% overall 

accuracy when compared to the ANN and SVM techniques. 

 

 

Table 5. ELM, ANN and SVM Training Results 
Sampling 
Rate 

Parameter Prediction Accuracies 

ELM ANN  SVM 

1 min MSE 0 0.0012 0.0027 

 Overall 
Accuracy (%) 

100 99.88 99.73 

 F-score 1 0.996 0.995 

10 min MSE 0 0.0121 0 

 Overall 
Accuracy (%) 

100 98.79 100 

 F-score 1 0.98 1 

30 min MSE 0 0 0 
 Overall 

Accuracy (%) 

100 100 100 

 F-score 1 1 1 

 

 

The best overall accuracy is given by ELM with 100% accuracy for the three sampling rates, the 

next is SVM with 100% accuracy for  the 10 minutes and 30 minutes sampling rates and then followed by 

ANN with 100% accuracy for the 30 minutes sampling rate. However, there are slight inaccuracies in 

prediction for SVM and ANN as shown in Table 5. False prediction occurs may be due to the undefined 

pattern of signals at certain sampling rates and there is a confusion in determining the output by the 

developed technique. 

 

 



BEEI  ISSN: 2302-9285  

 

Performance Comparison of Artificial Intelligence Techniques for Non-intrusive… (Khairuddin Khalid) 

151 

3.2. ELM, ANN and SVM Testing Results  

To evaluate the effectiveness of ELM, ANN and SVM in predicting and classifying, testing and 

validation were performed using 40% testing data sets and other new data sets for validation purposes. The 

testing data sets were selected randomly to avoid using the same training data set so as to test the 

effectiveness of the developed artificial intelligence techniques. Furthermore, the data sets used for validation 

is a new data set that reflects the pattern of signals grouped according to the usage of loads. As such, this 

validation can evaluate the actual effectiveness of the developed models. Table 6 shows the overall results of 

the testing and validation performed on the ELM, ANN, and SVM.  

 

 

Table 6 ELM, ANN and SVM Testing and Validation Results 
Sampling 

Rate 
(min) 

Technique MSE 
Overall 

Accuracy % 
F-Score 

  Test Val Test Val Test Val 

1 ELM 0 0 100 100 1 1 

 ANN 0.001 0.004 99.82 99.77 0.994 0.997 
 SVM 0.001 0 99.94 99.98 0.999 0.999 

10 ELM 0 0.018 100 98.24 1 0.983 

 ANN 0.028 0.157 98.15 95.69 0.957 0.948 
 SVM 0.009 0.022 99.07 97.84 0.982 0.978 

30 ELM 0 0.012 100 97.62 1 0.948 

 ANN 0.028 0.427 97.22 93.45 0.970 0.948 
 SVM 0.028 0.054 97.22 94.64 0.970 0.958 

Val–Validation 

 

 

Based on the results obtained, initial observations indicate that accuracy decreases with increase in 

the sampling rates from 1 minute to 30 minutes. This decrease in accuracy occurs due to loss of information 

about the unique features of the load contained in the aggregate power signal. In addition, the power signal at 

30 minutes sampling time does not show significant changes between the combined power of the aggregate 

load and this can cause confusion to predict the load classification.  The performance of the ELM technique 

using the testing data set indicates an overall accuracy of 100% for all the sampling rates. However, there is a 

slight decrease in accuracy in the validation results in which the overall accuracy are 98.24% and 97.62% for 

sampling times of 10 minutes and 30 minutes, respectively. 

From the testing results shown in Table 6, SVM is seen to be the second best technique by giving 

overall accuracies of 99.94%, 99.07% and 97.22% for sampling times of 1, 10 and 30 minutes, respectively. 

However, the validation results for SVM showed a slight decrease in accuracy with 97.84% and 94.64% for 

sampling rates of 10 minutes and 30 minutes,  respectively. The third best is the ANN technique where the 

testing overall accuracies are 99.82%, 98.15% and 97.22% according to the three sampling rates. There was a 

decrease  in accuracy in the ANN validation results, ie, 99.77%, 96.69% and 93.45% for sampling rates of 1, 

10 and 30 minutes, respectively. In general, the ELM technique gives the best results in terms of overall 

accuracy in load classification compared to the SVM and ANN. 

 

 

4. CONCLUSION 

This paper has presented a comparative study for evaluating the performance of artificial 

intelligence techniques in classifying the type and operating states of three load types, namely, fluorescent 

light, air-conditioner and personal computer for NILM. In the development of the NILM, a smart meter is 

used to measure real power at sampling rates of 1, 10 and 30 minutes and artificial intelligence techniques 

such as ELM, ANN and SVM are used to predict and classify the loads that are in operation. To enhance the 

load identification accuracy, additional input features to the ELM, ANN and SVM have been used, namely, 

the TT-transform features. The ELM, ANN and SVM were trained and tested using measured data from the 

smart meter at various sampling rates. Evaluation of the effectiveness of ELM, ANN and SVM techniques is 

measured in terms of MSE, overall percentage accuracy, and F-score values. Comparing the results of the 

ELM, ANN and SVM in predicting the operation of the three load types, the ELM technique has given more 

accurate and efficient results than other techniques in terms of accuracy of output predictions. Results have 

proven the effectiveness of the ELM  in load classification by obtaining overall percentage  accuracy of 

100%, MSE=0 and F-score of 1 during testing and validation for sampling rate of 1 min. 
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